Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Intervalo de año de publicación
1.
Front Genet ; 15: 1302527, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38482381

RESUMEN

Lung cancer is a crucial global issue, with more than one million deaths annually. While smoking is considered the main etiology of the disease, several genetic variants are associated with it. Alterations in vitamin D pathway genes have also been studied in regards to lung cancer, but the findings have been inconclusive. We here present a systematic review and meta-analysis of seven genes in this pathway: CYP2R1, CYP27B1, CYP24A1, CYP3A4, CYP3A5, GC, and VDR. Four databases (PubMed, Scopus, Cochrane Library, and Web of Science (WOS) databases) were searched. From these, 16 eligible case-control studies comprising 6,206 lung cancer cases and 7,272 health controls were obtained. These studies were subjected to comprehensive data extraction and quality scoring, and the pooled odds ratio with a 95% confidence interval was calculated to estimate the effect of each variant along with heterogeneity analysis and a risk of bias assessment. Our meta-analysis revealed an association between CYP3A4 (rs2740574) and lung cancer in the allelic, heterozygous, and dominant models. In addition, both VDR (Fok1: rs2228570) and VDR (Cdx-2: rs11568820) displayed a protective role in lung cancer development in the heterozygous and dominant models. Furthermore, VDR (Taq1: rs731236) showed a decreased risk of lung cancer in the allelic, homozygous, and recessive models. Similarly, VDR (BsmI: rs1544410) had a positive effect on lung cancer risk when subjected to allelic and recessive models. Our meta-analysis revealed the lack of association of CYP2R1 (rs10741657), CYP27B1 (rs3782130), CYP27B1 (rs10877012), CYP24A1 (rs6068816), CYP24A1 (rs4809960), CYP3A5 (rs776746), GC (rs7041), GC (rs4588), and VDR (ApaI: rs7975232) with lung cancer. Our work revealed that CYP3A4 (rs2740574) can represent an independent risk factor for lung cancer. This conclusion can aid better personalized medicine for lung cancer management, while further assessment for genetic variants of CYP3A4, CYP27B1, CYP24A1, GC, and VDR is still required to address more robust evidence.

2.
BMC Public Health ; 24(1): 395, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321448

RESUMEN

Recently, COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants, caused > 6 million deaths. Symptoms included respiratory strain and complications, leading to severe pneumonia. SARS-CoV-2 attaches to the ACE-2 receptor of the host cell membrane to enter. Targeting the SARS-CoV-2 entry may effectively inhibit infection. Acid sphingomyelinase (ASMase) is a lysosomal protein that catalyzes the conversion of sphingolipid (sphingomyelin) to ceramide. Ceramide molecules aggregate/assemble on the plasma membrane to form "platforms" that facilitate the viral intake into the cell. Impairing the ASMase activity will eventually disrupt viral entry into the cell. In this review, we identified the metabolism of sphingolipids, sphingolipids' role in cell signal transduction cascades, and viral infection mechanisms. Also, we outlined ASMase structure and underlying mechanisms inhibiting viral entry 40 with the aid of inhibitors of acid sphingomyelinase (FIASMAs). In silico molecular docking analyses of FIASMAs with inhibitors revealed that dilazep (S = - 12.58 kcal/mol), emetine (S = - 11.65 kcal/mol), pimozide (S = - 11.29 kcal/mol), carvedilol (S = - 11.28 kcal/mol), mebeverine (S = - 11.14 kcal/mol), cepharanthine (S = - 11.06 kcal/mol), hydroxyzin (S = - 10.96 kcal/mol), astemizole (S = - 10.81 kcal/mol), sertindole (S = - 10.55 kcal/mol), and bepridil (S = - 10.47 kcal/mol) have higher inhibition activity than the candidate drug amiodarone (S = - 10.43 kcal/mol), making them better options for inhibition.


Asunto(s)
COVID-19 , Humanos , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Esfingomielina Fosfodiesterasa/metabolismo , Ceramidas/metabolismo , Esfingolípidos
3.
Cancer Cell Int ; 24(1): 89, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38419070

RESUMEN

Cancer chemoresistance is a problematic dilemma that significantly restrains numerous cancer management protocols. It can promote cancer recurrence, spreading of cancer, and finally, mortality. Accordingly, enhancing the responsiveness of cancer cells towards chemotherapies could be a vital approach to overcoming cancer chemoresistance. Tumour cells express a high level of sphingosine kinase-1 (SphK1), which acts as a protooncogenic factor and is responsible for the synthesis of sphingosine-1 phosphate (S1P). S1P is released through a Human ATP-binding cassette (ABC) transporter to interact with other phosphosphingolipids components in the interstitial fluid in the tumor microenvironment (TME), provoking communication, progression, invasion, and tumor metastasis. Also, S1P is associated with several impacts, including anti-apoptotic behavior, metastasis, mesenchymal transition (EMT), angiogenesis, and chemotherapy resistance. Recent reports addressed high levels of S1P in several carcinomas, including ovarian, prostate, colorectal, breast, and HCC. Therefore, targeting the S1P/SphK signaling pathway is an emerging therapeutic approach to efficiently attenuate chemoresistance. In this review, we comprehensively discussed S1P functions, metabolism, transport, and signaling. Also, through a bioinformatic framework, we pointed out the alterations of SphK1 gene expression within different cancers with their impact on patient survival, and we demonstrated the protein-protein network of SphK1, elaborating its sparse roles. Furthermore, we made emphasis on different machineries of cancer resistance and the tight link with S1P. We evaluated all publicly available SphK1 inhibitors and their inhibition activity using molecular docking and how SphK1 inhibitors reduce the production of S1P and might reduce chemoresistance, an approach that might be vital in the course of cancer treatment and prognosis.

4.
Int J Nanomedicine ; 18: 6601-6638, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026521

RESUMEN

The necessity to engineer sustainable nanomaterials for the environment and human health has recently increased. Due to their abundance, fast growth, easy cultivation, biocompatibility and richness of secondary metabolites, algae are valuable biological source for the green synthesis of nanoparticles (NPs). The aim of this review is to demonstrate the feasibility of using algal-based NPs for cancer treatment. Blue-green, brown, red and green micro- and macro-algae are the most commonly participating algae in the green synthesis of NPs. In this process, many algal bioactive compounds, such as proteins, carbohydrates, lipids, alkaloids, flavonoids and phenols, can catalyze the reduction of metal ions to NPs. In addition, many driving factors, including pH, temperature, duration, static conditions and substrate concentration, are involved to facilitate the green synthesis of algal-based NPs. Here, the biosynthesis, mechanisms and applications of algal-synthesized NPs in cancer therapy have been critically discussed. We also reviewed the effective role of algal synthesized NPs as anticancer treatment against human breast, colon and lung cancers and carcinoma.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Neoplasias , Humanos , Nanopartículas/química , Plantas/química , Nanopartículas del Metal/uso terapéutico , Nanopartículas del Metal/química , Neoplasias/tratamiento farmacológico
5.
Virol J ; 20(1): 191, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626376

RESUMEN

BACKGROUND: The recent outbreak of the Coronavirus pandemic resulted in a successful vaccination program launched by the World Health Organization. However, a large population is still unvaccinated, leading to the emergence of mutated strains like alpha, beta, delta, and B.1.1.529 (Omicron). Recent reports from the World Health Organization raised concerns about the Omicron variant, which emerged in South Africa during a surge in COVID-19 cases in November 2021. Vaccines are not proven completely effective or safe against Omicron, leading to clinical trials for combating infection by the mutated virus. The absence of suitable pharmaceuticals has led scientists and clinicians to search for alternative and supplementary therapies, including dietary patterns, to reduce the effect of mutated strains. MAIN BODY: This review analyzed Coronavirus aetiology, epidemiology, and natural products for combating Omicron. Although the literature search did not include keywords related to in silico or computational research, in silico investigations were emphasized in this study. Molecular docking was implemented to compare the interaction between natural products and Chloroquine with the ACE2 receptor protein amino acid residues of Omicron. The global Omicron infection proceeding SARS-CoV-2 vaccination was also elucidated. The docking results suggest that DGCG may bind to the ACE2 receptor three times more effectively than standard chloroquine. CONCLUSION: The emergence of the Omicron variant has highlighted the need for alternative therapies to reduce the impact of mutated strains. The current review suggests that natural products such as DGCG may be effective in binding to the ACE2 receptor and combating the Omicron variant, however, further research is required to validate the results of this study and explore the potential of natural products to mitigate COVID-19.


Asunto(s)
Productos Biológicos , COVID-19 , Humanos , Productos Biológicos/farmacología , Enzima Convertidora de Angiotensina 2 , Vacunas contra la COVID-19 , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Cloroquina , Tratamiento Farmacológico de COVID-19
6.
Viruses ; 15(5)2023 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-37243127

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) canonically utilizes clathrin-mediated endocytosis (CME) and several other endocytic mechanisms to invade airway epithelial cells. Endocytic inhibitors, particularly those targeting CME-related proteins, have been identified as promising antiviral drugs. Currently, these inhibitors are ambiguously classified as chemical, pharmaceutical, or natural inhibitors. However, their varying mechanisms may suggest a more realistic classification system. Herein, we present a new mechanistic-based classification of endocytosis inhibitors, in which they are segregated among four distinct classes including: (i) inhibitors that disrupt endocytosis-related protein-protein interactions, and assembly or dissociation of complexes; (ii) inhibitors of large dynamin GTPase and/or kinase/phosphatase activities associated with endocytosis; (iii) inhibitors that modulate the structure of subcellular components, especially the plasma membrane, and actin; and (iv) inhibitors that cause physiological or metabolic alterations in the endocytosis niche. Excluding antiviral drugs designed to halt SARS-CoV-2 replication, other drugs, either FDA-approved or suggested through basic research, could be systematically assigned to one of these classes. We observed that many anti-SARS-CoV-2 drugs could be included either in class III or IV as they interfere with the structural or physiological integrity of subcellular components, respectively. This perspective may contribute to our understanding of the relative efficacy of endocytosis-related inhibitors and support the optimization of their individual or combined antiviral potential against SARS-CoV-2. However, their selectivity, combined effects, and possible interactions with non-endocytic cellular targets need more clarification.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/metabolismo , Endocitosis , Antivirales/farmacología , Antivirales/metabolismo , Membrana Celular/metabolismo
7.
Antibiotics (Basel) ; 12(2)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36830185

RESUMEN

Antimicrobial resistance (AMR) is one of the most important global public health problems. The imprudent use of antibiotics in humans and animals has resulted in the emergence of antibiotic-resistant bacteria. The dissemination of these strains and their resistant determinants could endanger antibiotic efficacy. Therefore, there is an urgent need to identify and develop novel strategies to combat antibiotic resistance. This review provides insights into the evolution and the mechanisms of AMR. Additionally, it discusses alternative approaches that might be used to control AMR, including probiotics, prebiotics, antimicrobial peptides, small molecules, organic acids, essential oils, bacteriophage, fecal transplants, and nanoparticles.

8.
Rev Med Virol ; 33(1): e2403, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36345157

RESUMEN

Emergence of SARS-CoV-2 variants warrants sustainable efforts to upgrade both the diagnostic and therapeutic protocols. Understanding the details of cellular and molecular basis of the virus-host cell interaction is essential for developing variant-independent therapeutic options. The internalization of SARS-CoV-2, into lung epithelial cells, is mediated by endocytosis, especially clathrin-mediated endocytosis (CME). Although vaccination is the gold standard strategy against viral infection, selective inhibition of endocytic proteins, complexes, and associated adaptor proteins may present a variant-independent therapeutic strategy. Although clathrin and/or dynamins are the most important proteins involved in CME, other endocytic mechanisms are clathrin and/or dynamin independent and rely on other proteins. Moreover, endocytosis implicates some subcellular structures, like plasma membrane, actin and lysosomes. Also, physiological conditions, such as pH and ion concentrations, represent an additional factor that mediates these events. Accordingly, endocytosis related proteins are potential targets for small molecules that inhibit endocytosis-mediated viral entry. This review summarizes the potential of using small molecules, targeting key proteins, participating in clathrin-dependent and -independent endocytosis, as variant-independent antiviral drugs against SARS-CoV-2 infection. The review takes two approaches. The first outlines the potential role of endocytic inhibitors in preventing endocytosis-mediated viral entry and its mechanism of action, whereas in the second computational analysis was implemented to investigate the selectivity of common inhibitors against endocytic proteins in SARS-CoV-2 endocytosis. The analysis revealed that remdesivir, methyl-ß-cyclodextrin, rottlerin, and Bis-T can effectively inhibit clathrin, HMG-CoA reductase, actin, and dynamin I GTPase and are more potent in inhibiting SARS-CoV-2 than chloroquine. CME inhibitors for SARS-CoV-2 infection remain understudied.


Asunto(s)
Actinas , COVID-19 , Humanos , Actinas/metabolismo , SARS-CoV-2/metabolismo , Endocitosis/fisiología , Internalización del Virus , Clatrina/metabolismo
9.
Med Oncol ; 40(1): 35, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36460880

RESUMEN

Breast cancer cells abnormally express vasopressin (AVP) and its receptors. The effect of AVP is largely orchestrated through its downstream signaling and by receptor-mediated endocytosis (RME), in which Dynamin 2 (Dyn2) plays an integral role in vesicle closure. In this work, luminal A breast cancer cells were treated with AVP, and then Dynasore (DYN) was employed to inhibit Dyn2 to explore the combined effect of AVP and Dyn2 inhibition on the survival of breast cancer cells. The results revealed that DYN alone demonstrated a concentration-dependent cytotoxic effect in AVP untreated cells. Apoptosis developed in 29.7 and 30.3% of cells treated with AVP or AVP+DYN, respectively, compared to 32.5% in cells treated with Wortmannin (Wort, a selective PI3K pathway inhibitor). More apoptosis was observed when cells were treated with DYN+Wort in presence or absence of exogenous AVP. Besides, 2 or 4- fold increases in the expression of Bax and Caspase-3, were observed in cells exposed to AVP in absence or presence of DYN, respectively. This was associated with higher levels of the autophagy marker (LC3II protein). Meanwhile, the activation of Akt protein, sequentially decreased in the same pattern. Cell's invasion decreased when they were exposed to AVP alone or combined with DYN or/and Wort. Conclusively, although many reports suggested the proliferative effect of AVP, the results predict the antiproliferative and antimetastatic effects of 100 nM AVP in luminal A breast cancer cells. However, the hormone did not enhance the cytotoxic effect of Dyn 2 or PI3K pathway inhibition. Summary of the Dynamin 2 independent AVP antiproliferative effects. Breast cancer cells expresses AVP as a Prohormone (A). At high dose of AVP, the hormone is liganded with AVP receptor (B) to initiate RME, where the endosomed complex (C) is degraded through the endosome-lysosome system, as a part of signal management. These events consume soluble Dyn2 in neck closure and vesicle fission (D). This makes the cells more substitutable to the direct apoptotic effect of DYN (E). Alternatively, at lower AVP doses the liganded AVP may initiate cAMP-mediated downstream signaling (F) and cellular proliferation. In parallel, Wort inhibits PIP2-PIP3 conversion (G) and the subsequent inhibition of PI3K/Akt/mTOR pathway leading to cell death.


Asunto(s)
Neoplasias de la Mama , Fosfatidilinositol 3-Quinasas , Humanos , Femenino , Proteínas Proto-Oncogénicas c-akt , Dinamina II , Neoplasias de la Mama/tratamiento farmacológico , Vasopresinas , Apoptosis
10.
Environ Sci Pollut Res Int ; 29(52): 78132-78151, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36175731

RESUMEN

Soil and water in Egypt have become contaminated with multiple pollutants. These contaminants arise from diverse sources, including misuse of fertilizers, industrial effluent discharged into irrigation water, discharge of wastewater in rural areas, and mining activities discharging wet and dry atmospheric deposits and heavy metal contamination. The pollutants can directly affect the quality of air, water, and food and have an adverse effect on human health. About 33% of the cultivated lands in Egypt are salinized due to extreme conditions like high temperatures and aridity. The presence of elevated salt levels in the soil leads to grave consequences for seed germination, plant biochemical processes, development, and reproduction, all of which result in the output of reactive oxygen species and eventually plant death. Despite the possibility of thermal, chemical, or a combination of the two to remediate contaminated soils, their applications are complicated and costly. Some plants, called hyperaccumulators, exhibit the potential to clean up pollutants safely from the soil and water at a low cost. All the technologies used in soil decontamination are called phytoremediation. Some physiological (e.g., phytoextraction, phytostabilization, phytotransformation, rhizofiltration, phytostimulation, phytovolatilization, phytodegradation, and phytodesalination) and molecular parameters (e.g., genes, peptides, and proteins) are involved in heavy metals accumulation of these plants. Although trees are not classified as hyperaccumulators, they have recently proved higher phytoremediation potential than herbaceous plants due to their deeper root system and greater biomass growth. Indeed, this review sheds the light on the application of trees for the phytoremediation of salts and heavy metals in Egypt.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Humanos , Contaminantes del Suelo/análisis , Árboles/metabolismo , Fertilizantes , Aguas Residuales , Especies Reactivas de Oxígeno/metabolismo , Egipto , Sales (Química) , Metales Pesados/metabolismo , Biodegradación Ambiental , Suelo/química , Plantas/metabolismo , Agua/metabolismo
11.
Rev Invest Clin ; 74(3): 165-171, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35797697

RESUMEN

BACKGROUND: There is scarce information about the occurrence of extended-spectrum ß-lactamases (ESBLs) in Salmonella enterica serovar Typhi (S. Typhi) from patients with typhoid fever. OBJECTIVE: To study the antimicrobial resistance and ESBL encoding genes among S. Typhi isolates in aforesaid patients from Lagos, Nigeria. METHODS: S. Typhi isolates were collected from blood samples of typhoid fever patients from 4 academic medical centers in Lagos, Nigeria. The identification of isolates and their antibiotic susceptibility testing were performed by standard bacteriological techniques and disc diffusion method, respectively. The production of ESBLs was investigated using combination disk test (CDT) and polymerase chain reaction (PCR). RESULTS: A total of 27 S. Typhi isolates was collected. All isolates were susceptible to imipenem and nitrofurantoin. Fifteen (55.6%) isolates were multidrug-resistant (MDR). The CDT test showed 11 (40.7%) ESBL producer isolates. However, the PCR revealed a higher occurrence rate for ESBL producers (66.7%, n = 18/27). The ESBL genes were as follows: blaCTX-M (37.0%, n = 10/27), blaSHV (18.5%, n = 5/27), and blaTEM (44.4%, n = 12/27). All ESBL positive S. Typhi isolates were MDR. CONCLUSIONS: This study showed the emergence of ESBL-harboring S. Typhi in patients with typhoid fever from Nigeria.


Asunto(s)
Salmonella typhi , Fiebre Tifoidea , Centros Médicos Académicos , Antibacterianos/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Nigeria/epidemiología , Salmonella typhi/genética , Fiebre Tifoidea/tratamiento farmacológico , Fiebre Tifoidea/epidemiología , beta-Lactamasas/genética
12.
Rev. invest. clín ; 74(3): 165-171, May.-Jun. 2022. tab
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1409575

RESUMEN

ABSTRACT Background: There is scarce information about the occurrence of extended-spectrum β-lactamases (ESBLs) in Salmonella enterica serovar Typhi (S. Typhi) from patients with typhoid fever. Objective: To study the antimicrobial resistance and ESBL encoding genes among S. Typhi isolates in aforesaid patients from Lagos, Nigeria. Methods: S. Typhi isolates were collected from blood samples of typhoid fever patients from 4 academic medical centers in Lagos, Nigeria. The identification of isolates and their antibiotic susceptibility testing were performed by standard bacteriological techniques and disc diffusion method, respectively. The production of ESBLs was investigated using combination disk test (CDT) and polymerase chain reaction (PCR). Results: A total of 27 S. Typhi isolates was collected. All isolates were susceptible to imipenem and nitrofurantoin. Fifteen (55.6%) isolates were multidrug-resistant (MDR). The CDT test showed 11 (40.7%) ESBL producer isolates. However, the PCR revealed a higher occurrence rate for ESBL producers (66.7%, n = 18/27). The ESBL genes were as follows: blaCTX-M (37.0%, n = 10/27), blaSHV (18.5%, n = 5/27), and blaTEM (44.4%, n = 12/27). All ESBL positive S. Typhi isolates were MDR. Conclusions: This study showed the emergence of ESBL-harboring S. Typhi in patients with typhoid fever from Nigeria.

13.
Infect Drug Resist ; 15: 1143-1154, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35340673

RESUMEN

Purpose: This study aimed to evaluate the presence of CRISPR-Cas system genes and their possible association with antibiotic resistance patterns of Enterococcus faecalis and Enterococcus faecium species isolated from hospital wastewater (HWW) samples of several hospitals. Methods: HWW samples (200 mL) were collected from wastewater discharged from different hospitals from October 2020 to March 2021. The isolation and identification of enterococci species were performed by standard bacteriology tests and polymerase chain reaction (PCR). Antibiotic resistance was determined using the disc diffusion. The presence of various CRISPR-Cas systems was investigated by PCR. The association of the occurrence of CRISPR-Cas systems with antibiotic resistance was analyzed with appropriate statistical tests. Results: In total, 85 different enterococci species were isolated and identified using phenotypic methods. The results of PCR confirmed the prevalence of 50 (58.8%) E. faecalis and 35 (41.2%) E. faecium, respectively. In total, 54 (63.5%) of 85 isolates showed the presence of CRISPR-Cas loci. The incidence of CRISPR-Cas was more common in E. faecalis. CRISPR1, CRISPR2, and CRISPR3 were present in 35 (41.2%), 47 (55.3%), and 30 (35.3%) enterococci isolates, respectively. The CRISPR-Cas positive isolates showed significant lower resistance rates against vancomycin, ampicillin, chloramphenicol, erythromycin, rifampin, teicoplanin, tetracycline, imipenem, tigecycline, and trimethoprim-sulfamethoxazole in comparison with CRISPR-Cas negative isolates. The results showed that the presence of CRISPR-Cas genes was lower in multidrug-resistant (MDR) isolates (53.1%, n = 26/49) compared to the non-MDR enterococci isolates (77.8%, n = 28/36) (P = 0.023). Conclusion: This study revealed the higher prevalence of E. faecalis than E. faecium in HWWs. Also, the lack of CRISPR-Cas genes was associated with more antibiotic resistance rates and multidrug resistance in E. faecalis and E. faecium isolates with HWW origin.

14.
Bioorg Chem ; 99: 103792, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32240873

RESUMEN

Although the chemosensitizing effect of Dexamethasone (DEX) and its ability to increase the sensitivity of breast cancer cells to chemotherapy were previously reported, this study aimed to explore how far cotreatment of breast cancer cells with paclitaxel (PTX) and DEX mimics the anticancer effect of nanoformulated PTX. To establish this goal, PTX was nanoformulated with poly (lactic-co-glycolic acid) (PLGA) and the nanoparticles (PTX-NPs) were physically authenticated. Breast cancer cells (MCF-7) were treated with PTX or PTX-NPs in presence or absence of low concentration (10 nM) of DEX. Cells viability (assessed by MTT assay), apoptosis (assessed by flow cytometry) and the expression of PTX resistance gene (TRX1) and PTX metabolizing genes (CYP2C8 and CYP3A4) were investigated. The results showed that nanoformulated PTX was validated by nano-size assessment, increased the anionic surface charge and prober conjugation with the biodegradable carrier (PLGA), as indicated by the FTIR spectroscopy. Initially, the IC50 value of PTX was 19.3 µg/ml and cotreatment with DEX minimized it to 5.22 µg/ml, whereas PTX-NPs alone inhibited cell proliferation with IC50 6.67 µg/ml. Also, in presence of DEX, PTX-NPs further decreased the IC50 to 5 µg/ml. In parallel, DEX has increased the responsiveness of cells to PTX without potentiating its apoptotic effect. Moreover, the glucocorticoid (with PTX or PTX-NPs) downregulated TXR1 gene by 26% (P < 0.01) and 28.4% (P < 0.05) respectively. Similarly, the mRNA level of CYP3A4 significantly decreased in presence of DEX. The main PTX metabolizing gene CYP2C8, in contrast, was upregulated, especially in cells cotreated with PTX/DEX (P < 0.001). Conclusively, the study reports that cotreatment of breast cancer cells with submolar concentration of DEX acts as similar as the nanoformulated PTX, possibly through its modulatory effects on the expression of the main PTX metabolizing gene (CYP2C8) and downregulating Taxol resistance gene.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Dexametasona/farmacología , Nanopartículas/química , Paclitaxel/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dexametasona/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Paclitaxel/química , Tamaño de la Partícula , Relación Estructura-Actividad , Propiedades de Superficie , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...